Learning a Bias Correction for Lidar-only Motion Estimation
نویسندگان
چکیده
This paper presents a novel technique to correct for bias in a classical estimator using a learning approach. We apply a learned bias correction to a lidar-only motion estimation pipeline. Our technique trains a Gaussian process (GP) regression model using data with ground truth. The inputs to the model are high-level features derived from the geometry of the point-clouds, and the outputs are the predicted biases between poses computed by the estimator and the ground truth. The predicted biases are applied as a correction to the poses computed by the estimator. Our technique is evaluated on over 50 km of lidar data, which includes the KITTI odometry benchmark and lidar datasets collected around the University of Toronto campus. After applying the learned bias correction, we obtained significant improvements to lidar odometry in all datasets tested. We achieved around 10% reduction in errors on all datasets from an already accurate lidar odometry algorithm, at the expense of only less than 1% increase in computational cost at run-time.
منابع مشابه
LIDAR, Camera, and Inertial Sensor Based Navigation and Positioning Techniques for Advances ITS Applications
Sensor fusion techniques have been used for years to combine sensory data from disparate sources. This dissertation focuses on LIDAR, camera and inertial sensors based navigation and vehicle positioning techniques. First of all, a unique multi-planar LIDAR and computer vision calibration algorithm is proposed. This approach requires the camera and LIDAR to observe a planar pattern. Then the geo...
متن کاملروشی نوین در کاهش نوفه رایسین از مقدار بزرگی سیگنال دیفیوژن در تصویربرداری تشدید مغناطیسی (MRI)
The true MR signal intensity extracted from noisy MR magnitude images is biased with the Rician noise caused by noise rectification in the magnitude calculation for low intensity pixels. This noise is more problematic when a quantitative analysis is performed based on the magnitude images with low SNR(<3.0). In such cases, the received signal for both the real and imaginary components will fluc...
متن کاملNoise Induces Biased Estimation of the Correction Gain
The detection of an error in the motor output and the correction in the next movement are critical components of any form of motor learning. Accordingly, a variety of iterative learning models have assumed that a fraction of the error is adjusted in the next trial. This critical fraction, the correction gain, learning rate, or feedback gain, has been frequently estimated via least-square regres...
متن کاملA Novel Line Extraction Algorithm using 2D LiDAR for Ego-motion Estimation
The paper proposes a convex hull-based algorithm for rapid line extraction from 2D LiDAR datas. It uses an algorithm to calculate feature points in LiDAR data frames. Geometric features contained in these feature points provide information for subsequent matching. Compared with traditional LiDAR matching algorithms, the algorithm is greatly improved in terms of iterations and matching precision...
متن کاملSample Selection Bias Correction Theory
This paper presents a theoretical analysis of sample selection bias correction. The sample bias correction technique commonly used in machine learning consists of reweighting the cost of an error on each training point of a biased sample to more closely reflect the unbiased distribution. This relies on weights derived by various estimation techniques based on finite samples. We analyze the effe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1801.04678 شماره
صفحات -
تاریخ انتشار 2018